

NanoTBTech

Nanoparticles-based 2D thermal bioimaging technologies

H2020-FETOPEN-1-2016-2017

Grant Agreement: 801305

Deliverable number D5.1 (D27)

Instruction Manuals: First Edition

Final Version

Project Deliverable Information Sheet

NanoTRTech Project	Project Ref. No. 801305
Nulle I D I cell I I eject	Project Title: Nanoparticles-based 2D thermal
	bioimaging technologies
	Project Website: <u>http://www.nanotbtech.eu/</u>
	Deliverable No.: D27
	Deliverable Type: Instruction Manual
	Dissemination Level: Public
	Contractual Delivery Date: 31 May 2019
	Actual Delivery Date: 31 May 2019
	EC Project Officer: Barbara GERRATANA

Document Control Sheet

Document	Title: Instructions manuals: first edition		
	Version: Final		
	Available at: Participant's Portal		
Authorshin	Written by: CSIC		
nutionship	Contributed by:		
	- UNIVERSIDADE DE AVEIRO (UAVR)		
	Approved by: all partners		

History of Changes

Version	Date	Description	Reviewer
V0	01.02.2019.	Version 0	CSIC
V1	23.04.2019.	Version 1	Prof. Luis Carlos
V2	10.05.2019	Version 2	CSIC
Final Version	24.05.2019	Final Version	All partners

Page3/25Date28/05/2019

Abbreviations and Acronyms

AC	Alternating Current
AMF	Alternating Magnetic Fields
CMOS	Complementary metal oxide semiconductor
CSIC	Agencia Estatal Consejo Superior de Investigaciones Cientificas
Eu	Europium
LMP	Lanthanide Molecular Probe(s)
Ln	Lanthanide
MIH	Magnetic Induction Heating
MNPs	Magnetic Nanoparticles
NP	Nanoparticle(s)
RF	Radiofrequencies
Sm	Samarium
TMNP	Thermometric Magnetic Nanoparticle(s) (MNPs loaded with LMPs)
UAVR	Universidade de Aveiro
WP	Work package(s)

NanaTPTach	Instructions Manuals DE 1 (D27) Final Version	Page	4/25
Nalio I D I ech	Instructions Manuals D5.1 (D27)- Final version	Date	28/05/2019

Copyright Notice

Copyright © 2019 NanoTBTech Consortium Partners. All rights reserved. NanoTBTech is a Horizon 2020 Project supported by the European Union under grant agreement no. 801305. For more information on the project, its partners, and contributors please see http://www.nanotbtech.eu/. It is allowed to copy and distribute verbatim copies of this document containing this copyright notice; however, the modification of this document is forbidden.

Disclaimer

The information and views set out in this document are those of the author(s)/Consortium and do not necessarily reflect the official opinion of the Commission. The Commission may not be held responsible for the use, which may be made of the information contained therein.

Table of Contents

INS	TRUC	CTIO	N MANUALS: FIRST EDITION	6
1.	Intr	oduc	tion	7
1	1.	Hyb	orid heater/thermometer nanoplatforms (TMNPs)	7
1	2.	Firs	t edition of Instrument I	8
1	3.	Firs	t edition of Instrument II	8
2.	Inst	rume	ent I. Magnetic-induced-heating & Optical Microscope Temperature Imaging	9
2	2.1.	Inst	rument description	9
	2.1.	1.	Part 1	10
	2.1.2	2.	Part 2	11
	2.1.3	3.	Part 3	12
	2.1.4	4.	Part 4	12
2	2.2.	Set-	up for temperature imaging	13
2	2.3.	Ope	erator skills	13
2	2.4.	Ope	erations instructions	14
	2.4.2	1.	Calibration of the molecular thermometer probes	14
	2.4.2	2.	Cell sampling and MNP internalization	15
	2.4.3	3.	Microscope optical and temperature imaging	15
	2.4.4	4.	Running the software for ratiometric thermometry	15
	2.4.	5.	Running the magnetic field application system	22
	2.4.	6.	Measuring the local temperature of nanoheathers in suspension	22
3.	3. In	istru	ment II. Magnetic-induced heating of cell cultures under controlled conditions	23
3	8.1.	Des	cription	23
	3.1.1	1.	Parts 1&2. Electromagnet and sample compartment	24
	3.1.2	2.	Part 3. AMF applicator	24
3	8.2.	0pe	erating the cell hyperthermia system	25
4.	Futı	ıre d	evelopments	25

INSTRUCTION MANUALS: FIRST EDITION

Foreword

Work package 5 (WP5) of the project is titled:" Magnetothermal microscope for 2D thermal cellular images and its use for the development of localized intracellular Hyperthermia therapy".

The main objective of WP5 is the construction of a new device for simultaneous ac magnetic field application, luminescent thermal imaging and optical microscopy imaging of cell cultures. The device will be used for the assessment of punctual intracellular magnetic hyperthermia therapies for cancer in combination with chemotherapy and immunotherapy.

The first task (Task 5.1) in WP5 is "Instrument development". This task is described in the project as the construction of an instrument for temperature and luminescence imaging of cells cultures under application of an ac magnetic field. The instrument includes an optical microscope equipped with: i) a temperature system to obtain pixel-to-pixel temperature images and temperature time profiles; ii) a magnetic induction system.

This report is mainly given by a lead beneficiary of the WP5: Agencia Estatal Consejo Superior de Investigaciones Científicas (CSIC), along with Universidade de Aveiro (UAVR), and it consist of the first edition of two manuals of the above mentioned instruments: i) magnetic- and optically-induced heating optical microscope imaging and ii) magnetic-induced heating of cell cultures under controlled conditions.

1. Introduction

The temperature imaging system is based on the use of lanthanide luminescent temperature probes that are embedded in the hybrid heater/thermometer nanoplatforms (TMNPs), and a detection system that captures the luminescence signal of the probes and transform it into a temperature image. The TMNPs are internalized in cancer cells and heated by an external alternating magnetic field (AMF). The purpose of the project is to measure the temperature reached in the TMNP and that of the bulk of the cells with the temperature imaging system to establish the temperature gradient and to model the heat transfer process.

Therefore, the first objective of WP5 is the construction of a new device for simultaneous ac magnetic field application, luminescent thermal imaging and optical microscopy imaging of cell cultures.

Two types of instruments will be built. One of them will be referred as Instrument I and it should be able to apply alternating magnetic fields to cell cultures, and at the same time to perform temperature imaging of cells in the culture. The other one will be referred as Instrument II, and it is meant for the application of AMF to cell cultures in such a way as to permit the evaluation of the impact of AMF on cell physiology by cell cytometry. This deliverable consists on a first edition of the instruction manuals for both instruments.

Obviously, requirements for the operation of such instruments are: i) to dispose of MNPs loaded with thermometric probes (TMNPs), and ii) to internalize the TMNPs in cells. Moreover, the thermometric probes should be stable in the conditions of cell cultures in order to observe the temperature changes in life cells.

Thus, this manual will address these issues as well as an instrument description and guidelines to operate the instrument.

1.1. Hybrid heater/thermometer nanoplatforms (TMNPs)

Two types of hybrid nanoplatforms are contemplated in this project:

- i) In the first type of TMNP, the magnetic heating nucleus is located at the core of the nanostructure while the temperature sensing probe will be constituted by molecular lanthanide temperature complexes embedded is a polymer shell;
- ii) In the second type of TMNPs, the temperature probe is a lanthanide solid material that is linked to the magnetic heather as a dual nanoparticle (NP) system or ideally as a coreshell NP structure. In both cases, the NPs are embedded in polymer shell that provides the necessary conditions for interaction with the cells.

Moreover, another type of non-magnetic NPs will be used as temperature probes for the measurement of the cell bulk temperature. These NPs will consist on either molecular lanthanide complexes embedded in polymer NPs, or in lanthanide NPs coated with a polymer.

NanaTPTach	Instructions Manuals DE 1 (D27) Final Version	Page	8/25
Nalioi Diech	Insuluctions Manuals D5.1 (D27)- Final Version	Date	28/05/2019

In any case, the thermometric NPs should accomplish certain optical requirements to be used for temperature imaging: i) they should hold a luminescent emission intensity unaffected in a cell culture medium; ii) their emission under available excitation source should be sufficiently intense to be detected by the CMOS camera implemented in the instrument.

1.2. First edition of Instrument I

In this first stage of development of the instrument, TMNPs of type i have been used as test samples, and the instrument has been tuned to work with them. These TMNPs are in a preliminary stage of development and their performance will be optimized along the project. In the tests of the instrument the TMNPs have been included in dry gels and fixed cells samples. AMF applicator and temperature measurements have been tested separately.

1.3. First edition of Instrument II

The AMF applicator of Instrument I is actuating only on cells situated in a small area of the cell culture in such a way that is not feasible to separate them from the non-treated cells in order to study the effect of the TMNPs on cell physiology in cytometer. Therefore, a second instrument has been designed for this purpose. In This second instrument provides a uniform magnetic field in an area of 2.5x2.5 cm that allows a simultaneous application of AMF on several cell wells representing the treated cells and the control cells, and therefore enabling a comparative study of the effect of magnetic field on cells by cytometry.

The instrument also provides a fair control of the cell cultures temperature during the experiment by means of a Peltier temperature controller installed in the cell culture compartment, and an air-cooling system of the coils and ferrite nucleus.

In this first stage of development, the construction has been practically completed, and the instrument is ready to start functioning tests.

2. Instrument I. Magnetic-induced-heating & Optical Microscope Temperature Imaging

2.1. Instrument description

A scheme of the instrument is depicted below

The instrument is formed by 4 parts:

- Part 1) Fluorescence Microscope
- Part 2) Temperature Imaging System
- Part 3) AC Magnetic Field Applicator

Part 4) Sample Holder

2.1.1. Part 1

- color camera
- filter cube
 4a. excitation filter
 4b. dichroic
 4c. Emission filter
- 5. stage
 - 5a. Sample holder fixing points

NanaTPTach	Instructions Manuals DE 1 (D27) Final Version	Page	11/25
Nalioidiech	Instructions Manuals D5.1 (D27)- Final version	Date	28/05/2019

The main components of the fluorescence microscope used in temperature imaging are a halide light source or alternatively a LED light source for fluorescence excitation, a transmitted light halogen light source 2 for phase contrast, a color camera 3 for fluorescence imaging, a wheel of filter sets 4 with 5 cubes composed of excitation band filter 4a, dichroic mirror 4b and cut-off emission filter 4c with the adequate wavelengths for lanthanide probes excitation and emission, and a stage to which a thermostatic sample holder can be coupled.

For temperature imaging the adequate filter cube must be selected. For instance, for Sm/Eu temperature probe, the cube is equipped with a 340-380 nm excitation filter and a 400 nm dichroic.

The sample holder is coupled to the pins marked with red circles in the stage 5 image.

2.1.2. Part 2

The temperature detection system is composed of:

- 1. A beam splitter 1 that divides the emission beam into two beams of low and high frequency, then each of the beams pass through selected narrow band filters that collect the main emission peaks of the lanthanide pair used in the NP probe. In the case of Sm/Eu temperature probes, the high wavelength filter is centered at 640 nm corresponding to the main peak of Sm, and the low frequency filter is centered at 610 nm corresponding to the main peak of Eu.
- 2. A CMOS camera that captures separately the images of each of the lanthanides in the temperature probe.
- 3. A computer equipped with software that transforms the emission images in a color code temperature image by collecting the intensity at every pixel of both images and then applying the calibration equation to obtain a temperature value for every pixel and transformed in a color image by using a predetermined color code.

Page12/25Date28/05/2019

2.1.3. Part 3

The magnetic field applicator consists of: 1) wave generator; 2) amplifier; 3) a set of capacitors for the LC circuit; 4) an electromagnet that forms part of the LC circuit, which is mounted in a plastic structure that fits into a 5) sample holder that holds the 6) cell well, which is placed in 7) a thermostatic holder that can be coupled to the microscope stage; and 8) a magnetic field sensor.

The magnet has been designed and fabricated by our co-operator in the University of Toulouse, Julian Carrey, in order to avoid the heating of the metal parts of the microscope by Eddy currents generated by the magnetic field created by the magnet. Therefore, the gap is very narrow so the field flux does not reach the objective.

2.1.4. Part 4

- 1. magnet holder
- 2. cell culture well
- thermostatic sample holder

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No **801305.**

2.2. Set-up for temperature imaging

In order to operate the system the set up should be adjusted to the type of molecular Ln probes used in cell cultures.

In the microscope cube, excitation band pass filter, dichroic mirror and emission edge filter should be placed according with the molecular sensor probe chosen in the experiment.

Band pass filters in the beam splitter will also be placed accordingly with the emission spectrum of lanthanide complexes.

2.3. Operator skills

In this first version, the operator should have a short training on fluorescence microscope and cell culture handling, and on magnetic induction heating. This training will be provided in location and it will take 8h.

The imaging system utilizes a calibration equation to transform the intensity values into temperature values. This calibration equation is previously obtained for the kind of TMNP to be used in the imaging experiments. The calibration optical system is described below. The software to operate the system is implemented in the same computer used for temperature imaging.

2.4. Operations instructions

2.4.1. Calibration of the molecular thermometer probes

Thermometric response of the TMNPs will be carried out in liquid suspensions with an optical fiber system depicted below

- 1. cuvette Peltier holder
- double optical fiber
- 3. LED light source
- 4. spectrophotometer
- 5. temperature control
- 6. optical fiber thermometer

1a. cuvette holder
 1b. temperature probe
 1c. optical thermometer probe

The program for temperature monitoring and data acquisition is implemented in the computer. The picture below shows the icon that opens the program and the windows for the control of the system.

The program yields the emission spectrum of the sample and the temperature. Once the temperature is stable, the operator has to introduce the chosen initial and final wavelengths of integration for the two peaks corresponding to each lanthanide, and the program plots the temperature parameter, Δ =I(Ln1)/I(Ln2) vs T. Then, the temperature in control 5 is set for another value.

Two runs of measurements are performed heating and cooling. The calibration curve is fitted to a second order equation that will be used as input for the temperature imaging system.

2.4.2. Cell sampling and MNP internalization

Cell wells with glass bottom the appropriate optical quality for microscope observation will be used for cell cultures.

After achieving an optimal cell density, the culture will be seeded with TMNPs for a time enough to be internalized in the cells.

The well will be immediately placed in the thermalized sample holder.

2.4.3. Microscope optical and temperature imaging

Once the cells are placed in the holder, phase contrast and fluorescence images of the cells will be taken with the color camera (part1.3).

Then, the microscope beam will be directed to the temperature detection system (part 2 of the instrument).

2.4.4. Running the software for ratiometric thermometry

This software has been designed for capturing the images of luminescence emission of each lanthanide and transforms them, pixel by pixel in a color-coded temperature image. The system also allows the selection of an area of observation and plots the variation of T in that area with the time.

NanoTBTech	Instructions Manuals D5.1 (D27)- Final Version	Page	16/25
		Date	28/05/2019

1) To open the program click the icon shown below.

Figure 1. The icon of the software.

- 2) Introduce the specific calibration equation of **TMNPs** previously obtained
 - (a) Go to *window*, select the *Show block diagram*, and double click the "calculus" marked by red square in Fig. 2.
 - (b) In the windows of Fig. 3, the functions of different media can be input in to the system.

NanoTPToch	Instructions Manuals DF 1 (D27) Final Varian			Page	17/25		
Nalio I Di ecii	Instructions Manuals D5.1 (D27)- Final Version			Date	28/05/2019		
Columber of Prove Panel on Adquisition/Amara laper In B Life two Panel Operation Table Water Hap On Panel In (2014 and 100 an	yMy Computer Internet ● I D Consch. 3 ■ ■	Calcular vi Block Diagram on Ad	AliconCamara Aproj Al Computer		C Search Q		
AdquisicionCamara.httproi/My Computer 4		AdquisicionCamara.hproj/My.Computer *					

Figure 3. The windows for introducing the ratio vs temperature functions.

3) Temperature imaging and T(t) plotting on selected areas of interest. Introduce the specific calibration equation of **TMNPs** previously obtained

Then, click the icon on the desktop *Adquisicion Camara* and a following window will appear:

Figure 4. The second window of the software after clicking the icon.

- After turning on the CMOS camera, and clicking the *Adquisicion camara* marked by red square in Fig. 4, the main window of the software will come out as below.

Figure 5. The main window of the software.

- Clicking the run button \Rightarrow live images of the emission of both lanthanides will be acquired (see below).

Figure 6. Image window.

The program allows several visualization options and operations: 1) Camera imaging (Imágenes cámara) (Fig. 6); 2) Save images (Grabar Imagen) (Fig. 7); 3) Select a region of interest (Región of interés) with several shape choices (Fig.8); 4) Histograms of emission images and temperature image, and Temperature vs time plots of selected area of interest (Fig. 9).

|--|

Instructions Manuals D5.1 (D27)- Final Version

Page	20/25
Date	28/05/2019

Pile Edit View Project Operate Tools Window Telp						E Have	
🌣 🚸 🌐 🖩 🛛 25pt Application Font. *	In 6. dr m				- Search		
magenes Camara Grabar imagen	Region de Interes ROI	Histogramas y promedios	Control de temperatura	V?. ð a-ssísalna		5 07	
LadCapture							
·	1911 House	-545 🥵 Sara					
	Descourses 1						
1201703-000	BASSING STATISTICS						
	N. C. C. LE						
	Section Section	-150					
Constant States and States		-75					
		- 33					
	RED LANGER						
Contract in Advances (V)	Contraction of the						
42-0	2	048					

Figure 7. Image saving window.

Figure 8. Select region of interest.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No **801305.**

Instructions Manuals D5.1 (D27)- Final Version

Page21/25Date28/05/2019

Figure 9. Histograms and mean values.

2.4.5. Running the magnetic field application system

To operate the system, the thermostatic sample holder 5 with the cell well 6 and the magnet 4 is placed in the microscope stage, and the temperature is set to physiological value.

Then, the working frequency is set in the wave generator 1 and the intensity of the magnetic field measured by the magnetic field sensor 8 is set in the amplifier 2.

To stop the field application, turn off the wave generator.

2.4.6. Measuring the local temperature of nanoheathers in suspension

The system can also be used to measure the local temperature of nanoheaters in liquid suspensions, by using a ferrite magnet designed for that purpose, which is presented in Fig. 10

Figure 10. Magnet for AMF applicator to NPs suspensions.

This magnet has a gap wide enough to hold a cuvette containing the liquid nanoheather suspension and a second control cuvette containing water. The nanoheather temperature is measured using the same system used for the calibration of the molecular thermometer probes.

3. 3. Instrument II. Magnetic-induced heating of cell cultures under controlled conditions

3.1. Description

A scheme of the instrument is depicted below.

The instrument consists of 3 parts:

- Part 1) Electromagnet
- Part 2) Multi-well cell sample compartment
- Part 3) AC Magnetic Field Applicator

NanoTBTech	Instructions Manuals DE 1 (D27) Final Varsian	Page	24/25
	Instructions Manuals D5.1 (D27)- Final Version	Date	28/05/2019

3.1.1. Parts 1&2. Electromagnet and sample compartment

3.1.2. Part 3. AMF applicator

There are two options for magnetic field applicator. In the first one, the capacitance is implemented in the air-refrigerated cage of the magnet and external wave generator and amplifier supply the current. In the second, the capacitance as well as the wave generator and amplifier are external and similar to those used in microscope system and fluid hyperthermia systems described above in sections 5 and 6.

3.2. Operating the cell hyperthermia system

To operate the system, place the cell sample well 3 in the thermostatic sample holder compartment 1, then fix the temperature to physiological value and apply the magnetic field as described in sections 5 and 6.

Three types of cell wells can be used, allowing the application to 1, 2 or 4 cell samples simultaneously. As the magnetic field in the whole gap area is very uniform, the system permits a direct comparison of the effect of the magnetic field on a control cell culture, a cell sample with NPs inside the cells, a cell sample with NPs outside the cells, and a cell sample with NPs outside and inside the cells.

After the field application the cell samples will be examined by cell cytometry to investigate the effects of the field in cell physiology, and especially on cell necrosis, apoptosis and heat shock proteins.

4. Future developments

Instrument 1 is ready for use although several components need to be improved. One of them is the thermostatic sample holder, which is being redesigned to achieve a faster temperature control. In a near future it will be used in assays directed to enhance the performance of the temperature molecular probes, in terms of sensibility and robustness in cell culture environment.

Instrument 2 is still being tested, especially concerning the cell compartment temperature control and the magnetic field applicator.

