Luminescence Intensity Ratio of Lanthanides

modeling and simulation using Judd-Ofelt theory

Aleksandar Ćirić
University of Belgrade
OMAS Optical Materials and Spectroscopy Group
omasgroup.org
Global RE production and demand
Rare-Earth elements

University of Belgrade
OMAS group
omasgroup.org
Abundance

Relative abundance of the chemical elements in Earth's upper continental crust.

Rock-forming elements
- Major
- Minor

Rare earth elements
- Ce

Major industrial metals
- Fe

Precious metals
- Au

Rarest metals, Te

Atomic number, Z
Abundance & Usage

Phosphors 5%

Million tonnes

Russia and former Soviet states

19

China

55

India

3.1

Malaysia

0.83

Australia

1.6

Brazil

0.05

US

13

Others

22

University of Belgrade
OMAS group
omasgroup.org
Lanthanide Electronic Configurations

- **La** = \([\text{Xe}] \, 5d^1 \, 6s^2\)
- **Ce** = \([\text{La}] \, 4f^1\)
- **Lu** = \([\text{La}] \, 4f^{14}\)
- **La\(^{3+}\)** = \([\text{Xe}]\)
- **Ce\(^{3+}\)** = \([\text{Xe}] \, 4f^1\)
- **Lu\(^{3+}\)** = \([\text{Xe}] \, 4f^{14}\)
Trivalent Lanthanides

- Sharp emission & absorption lines
- Transition energies independent on host
- Long lifetimes of emitting levels
- High intrinsic quantum yields

A complete 4fn energy level diagram for all trivalent lanthanide ions, P. Peijzel, A. Meijerink, R. Wegh, M.F. Reid, G.W. Burdick, doi: 10.1016/j.jssc.2004.07.046
Ln^3+ Energy Levels

- **Terms:** 7F, 5L, 5D
- **Sublevels:** 2S+1L(J)
- **Conf.:** [Xe]4f^6
- **Free ion energy levels:** ~20000 cm^-1, ~1000 cm^-1, ~100 cm^-1
- **Hamiltonian:** \(H = H_{\text{free}} + \sum B_q^k C_q^{(k)}(i) \)

Diagonalization:
- **Fermi-contact (CF):**
- **Kersting-Young (KY):**
Intensities
Judd-Ofelt theory – Prehistory

• RE discovery: 18th – 20th century

• 1937. – Van Vleck “The Puzzle of RE spectra in solids”

• 1940s - Racah algebra – powerful set of tools that made possible many complex spectroscopic calculations (e.g. free ion energy levels).

• 1962. – The solution to the “RE puzzle” simultaneously by Judd and Offelt.
"The two papers of 1962 represent the paradigm that has dominated all future work...up to the present time" – B. Wybourne

- Popularity rise
- Very complex QM theory
- Ability to predict oscillator strengths, branching ratios, lifetimes, quantum efficiencies by using only 3 parameters!
$\Omega \lambda$ Parametrization

Ab Initio
Absorption
Diffuse-Reflectance, Excitation
Emission

Ω

Derived quantities

Application
Ab initio Parametrization

• $\Omega_\lambda = (2\lambda + 1) \sum_p \sum_{t=1,3,5} \frac{|A_{tp}|^2}{2t+1} Y^2(t,\lambda)$

• A_{tp} – parameters of the static CF expansion

• Judd-Ofelt Theory - The Golden (and the Only One) Theoretical Tool of f-Electron Spectroscopy, L. Smentek, 10.1002/9781118688304.ch10
• Ab-initio calculations of Judd-Ofelt intensity parameters for transitions between crystal-field levels, J.Wen et al., doi: 10.1016/j.jlumin.2013.10.055
Parametrization from Absorption

\[f_{\text{exp}} = 4.319 \cdot 10^{-9} \frac{\text{mol} \cdot \text{cm}^2}{L} \int \varepsilon(\nu) \, d\nu \]

\[f_{\text{abs}} = \frac{8\pi^2 m_e}{3h} \frac{\nu}{2J+1} \frac{x_{ED}^{\text{abs}}}{n} \sum_{\lambda=2,4,6} \Omega_{\lambda} \left| \langle t^N S L J \parallel U^\lambda \parallel t^N S' L' J' \rangle \right|^2 + \frac{\hbar \nu}{6m_e c^2} \frac{1}{2J+1} \left| \langle t^N S L J \parallel L + gS \parallel t^N S' L' J' \rangle \right|^2 \]

- RELIC software

- Problems: “This method has two drawbacks: the density of ions in the sample must be accurately measured, and absorption can only be performed on single crystals and glasses but not on crystalline powders”, Blasse, doi: 10.1063/1.457106
Determination of Judd-Ofelt intensity parameters from the excitation spectra for rare-earth doped luminescent materials, W. Luo et al., doi: 10.1039/b921581f

\[S_{ex} = \frac{c}{\lambda \chi} \Gamma_{ex}, \quad S_{th} = \sum_{\lambda=2,4,6} \Omega_{\lambda} |\langle l^N S L J | U^\lambda | l^N S^\prime L^\prime J^\prime \rangle|^2 \Rightarrow \Omega_2: \Omega_4: \Omega_6 \]

For absolute values calibration is needed!

\[\tau^{-1}_R = \sum A_j' \]

Problem: Assumption that the non-radiative lifetime of the used level is 0!

Parametrization from Emission: Gd\(^{3+}\)

- The spectroscopy of Gd\(^{3+}\) in yttriumoxychloride: Judd-Ofelt parameters from emission data, J. Sytsma, G.F. Imusch, G. Blasse, doi: 10.1063/1.457106

- Similar to excitation, but by using \(A_J\):

\[
A_{SLJ \rightarrow S'L'J'} = \frac{64\pi^4 \tilde{\nu}_{SLJ \rightarrow S'L'J'}^3}{3h(2J + 1)} \left(\chi_{ED} D_{ED} + \chi_{MD} D_{MD} \right)
\]

\[
\tau_R = 1/ \sum A_{SLJ \rightarrow S'L'J'}
\]
Parametrization from Emission: Eu$^{3+}$

 - MD – host independent – can be used for calibration.
 - $^{5D_0} \rightarrow ^{7F_1}$
- Judd-Ofelt parametrization from emission spectra: The case study of the Eu$^{3+}$ 5D_1 emitting level, A. Ćirić, S. Stojadinović, M.G. Brik, M.D. Dramićanin, doi: 10.1016/j.chemphys.2019.110513
 - New: $^{5D_1} \rightarrow ^{7F_0}$
Parametrization from Emission: Eu$^{3+}$

$$A_{SLJ \rightarrow S'L'J'} = \frac{64\pi^4 \tilde{v}_{SLJ \rightarrow S'L'J'}^3}{3h(2J + 1)} (\chi_{ED}D_{ED} + \chi_{MD}D_{MD})$$

- **Baricenter**
- **Local field correction**
- **Dipole strength**
- **Population**

$$I_{SLJ \rightarrow S'L'J'} = \int i_{SLJ \rightarrow S'L'J'}(\tilde{v}) d\tilde{v} = h\tilde{v}_{SLJ \rightarrow S'L'J'}N_{SLJ}A_{SLJ \rightarrow S'L'J'}$$

$$\frac{I_\lambda}{I_{MD}} = \frac{\tilde{v}_\lambda A_\lambda}{\tilde{v}_{MD}A_{MD}} = \left(\frac{\tilde{v}_\lambda}{\tilde{v}_{MD}}\right)^4 \frac{\chi_{ED}D_{ED}^\lambda}{\chi_{MD}D_{MD}}$$

$$D_{ED}^\lambda = e^2 \Omega_\lambda U_\lambda$$

$$\Omega_\lambda = \frac{D_{MD}}{e^2 U_\lambda} \left(\frac{\tilde{v}_{MD}}{\tilde{v}_\lambda}\right)^4 \frac{9n_{MD}^3}{n_\lambda(n_\lambda^2 + 2)^2} \frac{I_\lambda}{I_{MD}}$$

- **RME**
Judd-Ofelt Parameters:
\(\Omega_2 = 1.146519402034921E-19 \text{ cm}^2 \)
\(\Omega_4 = 2.9751146626870955E-20 \text{ cm}^2 \)
\(\Omega_6 = \text{NaN cm}^2 \)

== Derived Quantities ==
Radiative Transition Probabilities
\(A(5D_0\rightarrow7F_1) = 68.17799738106247 \text{ s}^{-1} \)
\(A(5D_0\rightarrow7F_2) = 490.78769879104266 \text{ s}^{-1} \)
\(A(5D_0\rightarrow7F_4) = 63.78022107243416 \text{ s}^{-1} \)
\(A(5D_0\rightarrow7F_6) = \text{NaN s}^{-1} \)

Experimental Branching Ratios and Theoretical Branching Ratios
\(\beta(5D_0\rightarrow7F_1) = 0.11452264749042913; 0.10947963767105741 \)
\(\beta(5D_0\rightarrow7F_2) = 0.7938046817755628; 0.7881026357629585 \)
\(\beta(5D_0\rightarrow7F_4) = 0.09167267073390804; 0.10241772656598405 \)
\(\beta(5D_0\rightarrow7F_6) = 0.0; 0.0 \)

Barycenters
\(\nu(5D_0\rightarrow7F_1) = 16858.597021525726 \text{ cm}^{-1} \)
\(\nu(5D_0\rightarrow7F_2) = 16232.81884281908 \text{ cm}^{-1} \)
\(\nu(5D_0\rightarrow7F_4) = 14425.398497300715 \text{ cm}^{-1} \)
\(\nu(5D_0\rightarrow7F_6) = \text{NaN cm}^{-1} \)

Total Radiative transition probability = \(622.7459172445393 \text{ s}^{-1} \)
Nonradiative transition probability = 0.0 \(\text{s}^{-1} \)

Lifetimes
Theoretical radiative lifetime = 0.0016530641897090424 \(\text{s} \)
Calculated radiative lifetime = 0.0016057913385039838 \(\text{s} \)
Nanomaterials

- Correction for nanocrystals $\ll \lambda$

- $n_{eff} = n(\lambda)_{np}x + (1 - x)n_{med}$
 - x – filling factor – fraction of space occupied by the nanoparticles
 - $n(\lambda)_{np}$ - refractive index of nanoparticles as they would be in bulk
 - n_{med} - refractive index of surrounding media (e.g. $n_{air} \approx 1$)
Luminescence thermometry

Steady State
- Luminescence Intensity Ratio (LIR)
- Bandshift
- Bandwidth

Time Resolved
- Lifetime & Risetime
- Phase-shift
Luminescence Intensity Ratio (LIR)

The most widely used method!

\[
LIR = \frac{I_H}{I_L} = \left| \frac{N_H}{N_L} = \frac{g_H}{g_L} e^{-\Delta E/kT} \right| = B e^{-\Delta E/kT}
\]
LIR & Ln

• Abundance of sharp emissions to chose from, from UV to IR!

• Many of them are intense!

• Many well thermalized levels!
Judd-Ofelt and LIR: Acknowledgments

- Can JO be applied to LIR thermometry?

- Upconverting Nanoparticles Working As Primary Thermometers in Different Media, S. Balabhadra, M.L. Debasu, C. Brites, R. Ferreira, L.D. Carlos, doi:10.1021/acs.jpcc.7b04827

- A Novel Multifunctional Upconversion Phosphor: Yb$^{3+}$/Er$^{3+}$ Codoped La$_2$S$_3$, Y. Yang et al., doi: 10.1111/jace.12822
Judd-Ofelt and LIR

\[\text{LIR} = \frac{I_H}{I_L} = \left| I = \hbar \tilde{\nu} N_A, \quad \frac{N_H}{N_L} = \frac{g_H}{g_L} e^{-\frac{\Delta E}{kT}} \right| = \frac{\hbar \tilde{\nu}_H N_H A_H}{\hbar \tilde{\nu}_L N_L A_L} = \frac{g_H \hbar \tilde{\nu}_H A_H}{g_L \hbar \tilde{\nu}_L A_L} e^{-\frac{\Delta E}{kT}} \]

\[A_{SLJ \rightarrow S'L'J'} = \frac{64\pi^4 \tilde{\nu}_{SLJ \rightarrow S'L'J'}^3}{3h(2J + 1)} (\chi_{ED} D_{ED} + \chi_{MD} D_{MD}) \]

\[B = \frac{g_H \hbar \tilde{\nu}_H A_H}{g_L \hbar \tilde{\nu}_L A_L} \quad \rightarrow \quad B = \left(\frac{\tilde{\nu}_H}{\tilde{\nu}_L} \right)^4 \frac{\chi_{ED}^H D_{ED}^H}{\chi_{ED}^L D_{ED}^L} + \frac{\chi_{MD}^H D_{MD}^H}{\chi_{MD}^L D_{MD}^L} \]

\[D_{ED}^\lambda = e^2 \sum_{\lambda} \Omega_\lambda U^\lambda \]

\(\tilde{\nu} \) and \(D_{MD} \) are tabulated and host independent.

University of Belgrade
OMAS group
omasgroup.org
Figures of Merit via Ω_{λ}

$$S(T) = \frac{\Delta E}{kT^2} B \exp \left(-\frac{\Delta E}{kT} \right) = \frac{\Delta E}{kT^2} \left(\frac{\bar{\nu}_H}{\bar{\nu}_L} \right)^4 \frac{\chi^H_{ED}D^H_{ED} + \chi^H_{MD}D^H_{MD}}{\chi^L_{ED}D^L_{ED} + \chi^L_{MD}D^L_{MD}} \exp \left(-\frac{\Delta E}{kT} \right)$$

$$S_{\text{max}} = \frac{4k}{e^2\Delta E} \left(\frac{\bar{\nu}_H}{\bar{\nu}_L} \right)^4 \frac{\chi^H_{ED}D^H_{ED} + \chi^H_{MD}D^H_{MD}}{\chi^L_{ED}D^L_{ED} + \chi^L_{MD}D^L_{MD}}$$

$$\Delta T = \frac{kT^2 \sigma(\chi^L_{ED}D^L_{ED} + \chi^L_{MD}D^L_{MD})}{\Delta E(\chi^H_{ED}D^H_{ED} + \chi^H_{MD}D^H_{MD}) \exp(-\Delta E/kT)}$$

An Extension of the Judd-Ofelt theory to the field of lanthanide thermometry, A. Ćirić, S. Stojadinović, M.D. Dramićanin, doi: 10.1016/j.jlumin.2019.116749
Significance

• Ω is easier to obtain (single spectrum @ RT)
• Large number of Ω in literature

<table>
<thead>
<tr>
<th></th>
<th>JO-LIR</th>
<th>Experimental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Setup Price</td>
<td>Low</td>
<td>High</td>
</tr>
<tr>
<td>Speed</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Knowledge Level</td>
<td>Mid</td>
<td>High</td>
</tr>
<tr>
<td>Accuracy</td>
<td>Mid</td>
<td>High</td>
</tr>
<tr>
<td>Transition</td>
<td>High or Low</td>
<td>λ [nm]</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>Pr^{3+} [57,58]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3P_1→4H_5</td>
<td>H</td>
<td>525</td>
</tr>
<tr>
<td>3P_2→4H_5</td>
<td>L</td>
<td>540</td>
</tr>
<tr>
<td>Nd^{3+} [46,47]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4F_{7/2}→1I_{8/2}</td>
<td>H</td>
<td>740</td>
</tr>
<tr>
<td>4F_{5/2}→1I_{8/2}</td>
<td>H or L</td>
<td>815</td>
</tr>
<tr>
<td>4F_{3/2}→1I_{8/2}</td>
<td>L</td>
<td>900</td>
</tr>
<tr>
<td>4F_{7/2}→1I_{11/2}</td>
<td>L</td>
<td>1075</td>
</tr>
<tr>
<td>Sm^{3+} [48]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4F_{7/2}→4H_5</td>
<td>H</td>
<td>530</td>
</tr>
<tr>
<td>4G_{5/2}→4H_5</td>
<td>L</td>
<td>560</td>
</tr>
<tr>
<td>4F_{5/2}→4H_5</td>
<td>L</td>
<td>587</td>
</tr>
<tr>
<td>4F_{5/2}→4H_4</td>
<td>L</td>
<td>650</td>
</tr>
<tr>
<td>4F_{5/2}→4H_{11/2}</td>
<td>L</td>
<td>710</td>
</tr>
<tr>
<td>Eu^{3+} a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D_{5/2}→F_{4}</td>
<td>H</td>
<td>535</td>
</tr>
<tr>
<td>D_{3/2}→F_{2}</td>
<td>H</td>
<td>555</td>
</tr>
<tr>
<td>D_{3/2}→F_{2}</td>
<td>L</td>
<td>585</td>
</tr>
<tr>
<td>D_{3/2}→F_{4}</td>
<td>L</td>
<td>612</td>
</tr>
<tr>
<td>D_{3/2}→F_{4}</td>
<td>L</td>
<td>695</td>
</tr>
<tr>
<td>Dy^{3+} a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4I_{15/2}→4H_{15/2}</td>
<td>H</td>
<td>455</td>
</tr>
<tr>
<td>4P_{2/2}→4H_{15/2}</td>
<td>L</td>
<td>490</td>
</tr>
<tr>
<td>4P_{1/2}→4H_{13/2}</td>
<td>L</td>
<td>570</td>
</tr>
<tr>
<td>4P_{1/2}→4H_{15/2}</td>
<td>L</td>
<td>660</td>
</tr>
<tr>
<td>4P_{2/2}→4H_{13/2}</td>
<td>L</td>
<td>735</td>
</tr>
<tr>
<td>Ho^{3+} b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5P_{3/2}→4I_{6}</td>
<td>H</td>
<td>530</td>
</tr>
<tr>
<td>5S_{2/2}→4I_{6}</td>
<td>H or L</td>
<td>545</td>
</tr>
<tr>
<td>5P_{1/2}→4I_{6}</td>
<td>L</td>
<td>750</td>
</tr>
<tr>
<td>5S_{1/2}→4I_{6}</td>
<td>L</td>
<td>710</td>
</tr>
<tr>
<td>Er^{3+} a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4H_{11/2}→4I_{15/2}</td>
<td>H</td>
<td>525</td>
</tr>
<tr>
<td>4S_{2/2}→4I_{15/2}</td>
<td>L</td>
<td>550</td>
</tr>
<tr>
<td>Tm^{3+} a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4F_{3/2}→4H_{4}</td>
<td>H</td>
<td>670</td>
</tr>
<tr>
<td>4F_{3/2}→4H_{4}</td>
<td>L</td>
<td>695</td>
</tr>
<tr>
<td>4H_{4}→4H_{6}</td>
<td>L</td>
<td>800</td>
</tr>
</tbody>
</table>
Magnetic dipole and electric quadrupole transitions in the trivalent lanthanide series: Calculated emission rates and oscillator strengths, doi: 10.1103/PhysRevB.86.125102
Testing on Y_2O_3:Eu$^{3+}$

- LIR of $^5D_1 \rightarrow ^7F_{1,2}$ and $^5D_0 \rightarrow ^7F_{1,2,4}$
- \[LIR = C \frac{\alpha A_R + M \rho g_2 n^p}{\beta A_R + M \rho g_1 (1+n)^p} \]
Dual-excited single band LIR

- A. Souza, ..., R. Ferreira, L.D. Carlos, O.L. Malta, High-sensitive Eu$^{3+}$ ratiometric thermometers based on excited state absorption with predictable calibration, doi: 10.1039/C6NR00158K
- At 0 K all optical centers are at ground.
- $T > 0 K$: thermal population.
- Excitation from Ex1 and Ex2.
- Single emission is monitored.
- LIR of two emissions by excitations from Ex1 and Ex2.
- Dual-excited – much larger $\Delta E \rightarrow$ larger S_r
How? Optical centers redistribution

- Eu^{3+} ion example.
- $^7\text{F}_j$ are thermally excited.
- Number of optical centers follows Boltzmann distribution.
- Excitation can be executed on higher levels of the ground multiplet.

\[
X_A(T) = \frac{N_A}{N} = \frac{g_A \exp(-E_A/kT)}{\sum_i g_i \exp(-E_i/kT)}
\]
How? Excitations and emission

- Excitations from 7F_1 and 7F_2
- Monitor emission to 7F_4
Judd-Ofelt model

\[A_\lambda = \frac{64\pi^4 \tilde{v}_\lambda^3}{3\hbar} \chi_{ED} D_{ED}^\lambda \]

\[A_{MD} = \frac{64\pi^4 \tilde{v}_{MD}^3}{3\hbar} \chi_{MD} D_{MD} \]

\[I_{SLJ\rightarrow S'L'J'} = \hbar \tilde{\gamma}_{SLJ\rightarrow S'L'J'} N_{SLJ} A_{SLJ\rightarrow S'L'J'} \]

\[LIR = \frac{I_1}{I_2} = B \exp \left(\frac{\Delta E}{kT} \right) \]

\[B_{JO} = \left(\frac{\nu_1}{\nu_2} \right)^4 \frac{n_1^3 \cdot 9.6 \cdot 10^{-42} \text{ esu}^2 \text{ cm}^2}{e^2 \Omega_2 U^2 \cdot n_2(n_2^2 + 2)^2 / 9} \]

- Prediction of the B parameter.
- \(D_{ED}^\lambda = e^2 \Omega_\lambda U^\lambda \)
- \(D_{MD} = 9.6 \cdot 10^{-42} \text{ esu}^2 \text{ cm}^2 \)
- \(\Delta E \) can be obtained from spectrum.
Corrections

- Excitations are performed in some Stark sublevels.

- Correction factors are needed:
 \[\varphi_1 = \frac{I_{1,1}}{\sum_{j=1}^{3} I_{1,j}}, \quad \varphi_2 = \frac{\sum_{j=4}^{6} I_{2,j}}{\sum_{j=4}^{8} I_{2,j}} \]

- \(LIR_{J0} = \frac{\varphi_1}{\varphi_2} B_{J0} \exp \left(\frac{\Delta E_{sp}}{kT} \right) \)

TEST ON Lu₂O₃:Eu³⁺

- \(B = 0.04773 \)
- \(\varphi_1 = 0.304, \varphi_2 = 0.873 \)
- **JOES**: \(\Omega_2 = 9.605 \cdot 10^{-20} \text{cm}^2, \Omega_4 = 2.928 \cdot 10^{-20} \text{cm}^2 \)

 \[\text{https://omasgroup.org/joes\textendash software/} \]
- \(B_{JO} = 0.137 \)
- \(B_{JO} \frac{\varphi_1}{\varphi_2} = 0.04770 \)
- **99.9%** match between \(B \) and \(B_{JO} \frac{\varphi_1}{\varphi_2} \)
CONCLUSIONS

• Temperature invariant B parameter for LIR can be predicted
 • Prediction of Sensitivities!

• Needed: 1 RT spectrum or Ω from literature!

• Test showed high matching between experimental and theoretical B parameters.

• Applicability: tool for initial selection of phosphors!

• Applies to other Lanthanides.
Thank You!

Software:
https://omasgroup.org/jolir-interactive-software/
https://omasgroup.org/joes-software/

University of Belgrade
OMAS group
omasgroup.org