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THE IMPORTANCE OF WATER

Water is the most important liquid for

. ) HOW MUCH OF THE EARTH IS COVERED WITH WATER?
our existence and plays an essential

role in physics, chemistry, biology and MORE THAN

geoscience. 70% oF THE
EARTH’'S SURFACE

More than 70% of the earth’s surface IS COVERED

BY WATER

is covered by water.

WATER IS

AN ESSENTIAL
COMPONENT
OF ALL ANIMAL
AND PLANT LIFE

www.20questionsaboutwater.com



WATER ANOMALIES

Water exhibits a range of anomalous
properties

increased density upon melting, density maximum
at 277 K(4°C)

reduced viscosity under pressure at below 306 K
(33°C), high surface tension

decreased isothermal compressibility (minimum
at 319 K or 46°QC)

heat capacity with temperature at ambient
conditions (minimum at 308 K or 35°C) respectively.
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EXPERIMENTAL

Core-shell upconverting nanoparticles

NaYF,:Yb/Er(18/2%)@NaYF, core-shell NPs (24 nm)

Ligand-free NaYF,:Lu/Yb/Er (50/18/2%) nanoparticles (106 nm)

#'.

Nat. Nanotechnol. 11, 851 (2016)



EXPERIMENTAL
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24 nm
(pH=5.10)

EXPERIMENTAL
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EXPERIMENTAL

980 nm Laser

(0L°S=Hd)
wu g

Optical Detector
Fiber

Nat. Nanotechnol. 11, 851 (2016)



EXPERIMENTAL
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EXPERIMENTAL

in distinct solvents

Water vs other organic solvents

a clear and distinct bilinear behavior is clearly
discerned in water, a clear signature near the
water’s compressibility minimum

A crossover temperature occurs in the
transition between the two linear trends for
water (irrespectively of the heating power
employed)
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SCANNING THE WATER's
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The bilinear behavior is clearly discerned in water, depending on the pH and
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The water’s tetrahedral arrangement describes the
structure of the liquid water at lower temperatures

isothermal
compressibility
of ambient
pressure water
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WATER'’s compressibility minimum

The square of the Brownian velocity
presents a clear bilinear trend. The
interception of the two straight lines
occurs at a temperature (T_) about
the temperature of the water's
compressibility minimum

The two-straight lines resemble those
obtained using the same strategy on
the structural XRD data reported by
Skinner et al.

3.2

2.8

2.4

v 2 (1 0-7 mZ.S-Z)

2371

470

4.60

(6 0@ of 000 © ©

J. Chem. Phys. 141, 214507 (2014)

1 1 | 1 | 1 |
300 320 340 360
Temperature (K)




Bilin Zhuang
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Rationalizing the
olbserved changes
INn the Brownian
velocity frough o
percolating
network of low-
and high-density
iquid water




LIQUID WATER is a mixture of two

hydrogen-bonding structures

Less dense
favored at low temperature

More dense
favored at high temperature
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Several recent references present a
for liquid water

similar description

RESEARCH

Reversible structural transformations in supercooled
liquid water from 135 to 245 K

Loni Kringle®, Wyatt A. Thornley®, Bruce D. Kayt, Greg A. Kimmelt

A fundamental understanding of the unusual properties of water remains elusive because of the limited
data at the temperatures and pressures needed to decide among competing theories. We investigated the
structural transformations of transiently heated supercooled water films, which evolved for several
nanoseconds per pulse during fast bser heating before quenching to 70 kelvin (K). Water's structure
relaxed from its initial configuration to a steady-state configuration before appreciable crystallization.
Over the full temperature range investigated, all structural changes were reversible and reproducible by
a linear combination of high- and low-temperature structural motifs. The fraction of the liquid with the
high-temperature motif decreased rapidly as the temperature decreased from 245 to 190 K, consistent
with the predictions of two-state “mixture” models for supercooled water in the supercritical regime.

Science 369 1490 (2020)
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Direct Evidence in the Scattering Function for the Coexistence of
Two Types of Local Structures in Liquid Water

Rui Shi and Hajime Tanaka™

Cite This: J. Am. Chem. Soc. 2020, 142, 2868-2875 I: I Read Online

ACCESS |

ABSTRACT: Water is the essential liquid on earth since it not only plays vital roles in
living systems but also has a significant impact on our daily life from various industrial
applications to earth’s climate system. However, the unusual properties of liquid water,
if compared with other liquids, has puzzled us for centuries because the basic structure
of liquid water has remained unclear and has continued to be a matter of serious
debate. Here, by computer simulations of three popular water models and the analysis
of recent scattering experimental data, we show that there are two overlapped peaks
hidden in the apparent “first diffraction peak” of the structure factor. One of them
(ordinary peak) corresponds to the neighboring O—0 distance as in ordinary liquids,
and the other (anomalous peak) corresponds to a longer distance. We reveal that this
anomalous peak arises from the most extended period of density wave associated with a
tetrahedral water structure and is to be identified as the so-called first sharp diffraction peak that is commonly observed in silica and
other tetrahedral liquids. In contrast, the ordinary peak arises from the density wave characteristic of local structures lacking
tetrahedral symmetry. This finding unambiguously proves the coexistence of two types of local structures in liquid water. Our
findings not only provide vital clues to settle a long-standing controversy on the water structure but also allow direct experimental
access to the fraction of tetrahedral structures in liquid water.
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JACS 142 2868 (2020)



A percolation phase transition might

explain our observations

A percolation transition occurs at the so called
percolation threshold, which is the point at
which the microscopic elements become
connected for the first time, and form

a sample-spanning path across the system

Nature 409 318 (2001)

Relationship between structural order
and the anomalies of liquid water
Jeffrey R. Errington & Pablo G. Debenedetti

Department of Chemical Engineering, Princeton University, Princeton,
New Jersey 08544-5263, USA

In contrast to crystalline solids—for which a precise framework
exists for describing structure'—quantifying structural order in
liquids and glasses has proved more difficult because even though
such systems possess short-range order, they lack long-range
crystalline order. Some progress has been made using model
systems of hard spheres™, but it remains difficult to describe
accurately liquids such as water, where directional attractions
(hydrogen bonds) combine with short-range repulsions to
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Each molecule in water has different
TETRAHEDRAL orientational order
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Nature 409 318 (2001)



A percolation phase transition might

explain our observations
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® Experimental results
(square of the Brownian velocity)
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v 2 (1 0-7 m2.s~2)

Rapid growth of hydrogen-bond
network at ~330 K

From the energy equipartition
® Experimental results theorem results
(square of the Brownian velocity) T
2
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vy increase with the T increase
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The nanoparticle as a ruler for

scanning the structural changes
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' Extensiveness of the LDL motif

<T,

>T,

From the energy equipartition
theorem results

. T
VUp X .
m
T - temperature
m*- effective mass (NP + displaced fluid)

vy increase with the T increase

vg(T) slope increases for T > T_
)

At T_the NP size is similar to

that of the LDL motif

(the NP is a ruler to measure the LDL extension)
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Exploring Single-Nanoparticle Dynamics at High Temperature by
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ABSTRACT: The experimental determination of the velocity of a
colloidal nanoparticle (vyp) has recently became a hot topic. The
thermal dependence of g is still left ta be explored although it is a
valuable source of information allowing, for instance, the 9

i | N | 1 | L | L | L discernment between ballistic and  diffu: regimes. Optical
tweezers (OTs) constitute a tool especially useful for the .
experimental determination of v although they have only been .
capable of determining it at room temperature. In this work, we
demonstrate that it is possible to determine the temperature 280 300 310 320 330 340
dependence of the diffusive velocity of a single colloidal Low ligl
| ) temperature temperature Temperature (K)

nanoparticle by analyzing the temperature dependence of optical

= forces. The comparison between experimental results and
I IE nm theoretical predictions allowed us to discover the impact that the anomalous temperature dependence of water properties has on

the dynamics of colloidal nanoparticles in this temperature range.

KEYWORDS: nanoparticle velocity, optical tweezers, Brownian motion, single nanoparticle, upconversion, high temperature
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Conclusions

Using suspended nanocrystals as rulers, we have been able
to detect a crossover temperature (T_) in the nanoparticle’s
instantaneous Brownian velocity in water

At T_the size of the nanoparticle and the LDL motif are
comparable.

This rapid change of the size of the LDL motif at around 330
K'is a result of an underlying percolation transition.

This technique can be key to decipher the behaviour of water,
understanding the temperature dependence of its length scale
will provide insight into the properties, as well as the
mechanisms, functions, and roles of water (e.g. stability of
proteins)
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