

# webinars

### Aiming at reliable luminescence thermal sensing: basic strategies to overcome the problem of light attenuation in tissues

Speaker: E. Ximendes





• Luminescence thermometry is becoming quite popular!



• This interest pushed forward some significant advancements in their *in vivo* applications.



Ximendes et al., Advanced Functional Materials, 2017, 27 (38), 1702249



• Its reliability, however, is now being put to a thorough test.



 $\bigstar$  Absorption structures  $\longrightarrow$  Light ( $\lambda_1$ )  $\longrightarrow$  Light ( $\lambda_2$ )

• Biological tissues could completely distort the thermal readout provided by LNThs.



Shen et al, ACS Nano, **2020**, 14, 4122

• As a result, new strategies are already being proposed to overcome such a problem.



Shaohua Yu et al., Advanced Science, **2020**, 21, 2001589

• We need to think of ways of reducing this problem.



### Concept

### Multiparametric thermal sensing:

One probe, multiple ways of measuring temperature Intensity Intensity Normalized Intensity Wavelength Wavelength Wavelength Λmax Calibration 2 1 808 nm **NIR-II** luminescence  $T_{R} = f(R); R = \frac{12}{12}$ Emission Ag<sub>2</sub>S  $T_{\lambda} = g(\lambda_{\max})$ Itot  $T_1 = h(I_{tot})$ Heat  $\lambda_{em}$ 

Concept

# The attenuation of light could still affect many parameters. So what's the advantage?



Concept



But what if you found thermometric parameters whose **sub-tissue** thermal readouts agree by considering only the intrinsic calibration?

**Concept - Analogy** 

### Do you think that this man is dangerous?



Marie- p4

Saul- p5

11

### Depiction of the experiment



# An arbitrary selection of the thermometric parameters will provide conflicting termal readouts.



What seems to be the most reliable witness in our case?



### We found other parameters that agree with the trusted one.



### We found other parameters that agree with the trusted one.



We can find three thermometric parameters, computed in three different ways, whose termal readouts differ in only 0.5 °C.



• Besides impressive agreement, what makes you trust that your witnesses are not in a plot?



# **Conclusions/Perspectives**

- The strategy of multiparametric thermal sensing can be reasonably applied to cases where there is at least a clue about the minimal interference of the tissue over a specific thermometric parameter.
- For the case of Ag2S NPs found in superficial tumors, this parameter seemed to be the peak position.
- Similar thermal readouts were iteratively found and, through ex vivo calibration, it was found that they were also minimally affected by the tissues.
- The approach, though not universal, could still be applied in many situations.

## Acknowledgements



### Appendix

