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Intracellular Temperature Mapping
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The packing Parameter 
increase with the size of 

the Hydrophic Block

The packing Parameter is 
influenced by the balance  

of the hydrophilic and 
hydrophobic block
fhydrophilic/ fhydrophobic

Molecular Weight
(Mw)

Degree of Polymerization
(DP)

Self assembly of amphihilic block copolymer in water

Amphiphilic block copolymers are formed by covalently bonded hydrophobic and hydrophilic blocks that  can 
self assembly in a selective solvent ( water) into different morphologies able to encapsulate hydrophobic 
species improving the stability and solubility in aqueous environments.

The Packing Parameter predict the molecular self assembly
Intrinsic Factor 



fhydrophilic  45%

fhydrophilic =3510%

fhydrophilic <25%

~ 50%

Self assembly of amphihilic block copolymer in water

Amphiphilic block copolymers are formed by covalently bonded hydrophobic and hydrophilic blocks that  can 
self assembly in a selective solvent ( water) into different morphologies able to encapsulate hydrophobic 
species improving the stability and solubility in aqueous environments

Empirical ExperienceThe Packing Parameter predict the molecular self assembly



The RAFT process involves conventional free radical polymerization of a substituted 
monomer in the presence of a suitable chain transfer agent (RAFT agent or CTA)

RAFT (Controlled Radical Living Polymerization )  WELL DEFINE POLYMERS



RAFT (Controlled Radical Living Polymerization )  WELL DEFINE POLYMERS

The RAFT process involves conventional free radical polymerization in the presence 
of a suitable chain transfer agent (RAFT agent or CTA)



The RAFT process involves conventional free radical polymerization in the presence 
of a suitable chain transfer agent (RAFT agent or CTA)

Control over the molecular architecture

Chains can be extended un addition of further monomers
Living Character:  Block Copolymers

RAFT (Controlled Radical Living Polymerization )  WELL DEFINE POLYMERS



The RAFT process involves conventional free radical polymerization in the presence 
of a suitable chain transfer agent (RAFT agent or CTA)

Control over the molecular architecture

Chains can be extended un addition of further monomers
Living Character:  Block Copolymers

Wide Range of Monomers
(meth)acrylates, (meth)acrylamides, styrenes, dienes,  

vinylmonomer, acrylonitrile CTA-DEPENDENCE

RAFT (Controlled Radical Living Polymerization )  WELL DEFINE POLYMERS



The RAFT process involves conventional free radical polymerization in the presence 
of a suitable chain transfer agent (RAFT agent or CTA)

Control over the molecular architecture

Chains can be extended un addition of further monomers
Living Character:  Block Copolymers

Wide Range of Monomers
(meth)acrylates, (meth)acrylamides, styrenes, dienes,  

vinylmonomer, acrylonitrile CTA-DEPENDENCE

Commercially available RAFT agents 
cover close to all the monomer classes that undergo 

radical polymerization

RAFT (Controlled Radical Living Polymerization )  WELL DEFINE POLYMERS



The RAFT process involves conventional free radical polymerization in the presence 
of a suitable chain transfer agent (RAFT agent or CTA)

Control over the molecular architecture

Chains can be extended un addition of further monomers
Living Character:  Block Copolymers

Wide Range of Monomers
(meth)acrylates, (meth)acrylamides, styrenes, dienes,  

vinylmonomer, acrylonitrile CTA-DEPENDENCE

Commercially available RAFT agents 
cover close to all the monomer classes that undergo 

radical polymerization

Versatile/ Milder reaction conditions 
Applicable to all modes of free radical
polymerization, Bulk, Organic or Aqueous Solution,
Emulsion, Mini-emulsion, Suspension.

RAFT (Controlled Radical Living Polymerization )  WELL DEFINE POLYMERS



The RAFT process involves conventional free radical polymerization in the presence 
of a suitable chain transfer agent (RAFT agent or CTA)

Control over the molecular architecture

Chains can be extended un addition of further monomers
Living Character:  Block Copolymers

Wide Range of Monomers
(meth)acrylates, (meth)acrylamides, styrenes, dienes,  

vinylmonomer, acrylonitrile CTA-DEPENDENCE

Commercially available RAFT agents 
cover close to all the monomer classes that undergo 

radical polymerization

Versatile/ Milder reaction conditions 
Applicable to all modes of free radical
polymerization, Bulk, Organic or Aqueous Solution,
Emulsion, Mini-emulsion, Suspension.

Control over the Molecular weight/Composition

𝑴𝒘𝒕𝒉𝒆𝒐 =
[𝑴]

[𝑪𝑻𝑨]
× 𝑴𝒘𝒎𝒐𝒏𝒐𝒎𝒆𝒓 𝑪𝒐𝒏𝒗 % +𝑴𝒘𝑪𝑻𝑨

Conv %: Percentage Monomer Conversion (1H-NMR, GS)

[M]: Monomer Concentration

[CTA]: Concentration of CTA agent

[Mwmonomer]: Molecular weigth of the Monomer

[MwCTA]:  Molecular weigth of RAFT agent

𝑫𝑷 =
[𝑴]

[𝑪𝑻𝑨]
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Chains growth at a similar rate 
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High Degrees of Conversion can be reached
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HIGH FUNCIONALITY

Tolerant towards a wide number of functional 
groups  and Solvents

-OH, COOH, -NR2, -N3, -SOH3, -CONR2

Functional Groups can be introduce in CTA agent
R and Z 

RAFT (Controlled Radical Living Polymerization )  WELL DEFINE POLYMERS



Hydrophilic

Amphiphilic Block Copolymer

Hydrophilic  Block. Control in the Molecular weight/ Molecular Weight Distribution/Architecture 

DP: 27-30

MnHydrophilic: 13500 Da

70%MOEG(M)A 500 Da

30% OEG(M)A 480 Da

High Molecular Weight

Polyethylene glycol
Biocompatible, Non toxic, non-immunogenic

High Hydrophilic character  
Neutral and flexible nature

Resistant to protein adsorption
Soluble in Organic Solvents

Heterobifunctional PEG can be synthetized
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Hydrophilic

Amphiphilic Block Copolymer

Hydrophilic  Block. Control in the Molecular weight/ Molecular Weight Distribution/Architecture 

DP: 27-30

MnHydrophilic: 13500 Da

70%MOEG(M)A 500 Da

30% OEG(M)A 480 Da

High Molecular Weight

Conversion 90%

COMB-LIKE block 

High density of chains

*Increase the steric stability of the hydrophilic

corona of the nanoaggregates by interdigitacion of the PEG chains

*High density of functional groups at the surface



Hydrophilic

Amphiphilic Block Copolymer

Control in the Molecular weight/ (Composition-Functionalization % of different monomer)

Dormant Chains
Hydrophylic Block

Macro-CTA
85-90%

Fluorescent organic dyes for tracking 
and colocalization of nanoparticles

Funtional Monomers Post-Polymerization reactions

High density of different functional groups by
Chemical modification of the terminal -OH group

70%MOEG(M)A 500 Da
30% OEG(M)A 480 Da

Multifunctionalization



fHydrophilic: 0.65-0.75

MnHydrophilic: 13500 Da

Hydrophilic

Amphiphilic Block Copolymer

Hydrophobic

fHydrophobic: 0.35-0.25

MnHydrophopic: 5000-6500 Da

Control  over Molecular weigth Narrow Mn Distribución 

PDI:1.07

Mn: 18500-20000 Da
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 Block Copolymer

Living Character
Chains can be extended upon 
addition of further monomers

Block Copolymers

Control in the Molecular weight/ Composition  (Hydrophilic/Hydrophobic balance)

GPCKinetics_NMR

Mn: [M]/MacroCTA
Polymerization TIme



Hydrophilic

Amphiphilic Block Copolymer

Hydrophobic
PDI:1.07

Mn: 18500-20000 Da

Control in the Molecular weight/ Composition  (Hydrophilic/Hydrophobic balance)

Auxiliary Ligand DP:3-4
Crosslinker

Cinnamates

Main Hydrophobic Monomer

Glassy
pH Responsive

DP:40-50

Transparent
Soft

DP:45-50

High Biocompatibility
High Hydrophobic Character

Glassy
DP:10-15

Control In the Composition
% of different monomer



Synthesis of  Thermometric Polymer-Lanthanide Complex Conjugates (Eu/Sm)

Polymer and Complexes are mixed
In Stoichiometric amounts

(Phen/Ln)

Complex is attached covalently to the 
hydrophobic block by coordination  
with the auxiliary ligand

Improve the stability and Efficiency  of Encapsulation vs Physical Encapsulation 

Easy Purification and Characterization  vs Direct Polymerization (Polymerizable LnL3PhenA) 

“Library” of Different NT  using Different Lanthanide Complexes or Using different Eu/Sm %

High control in the Eu/Sm Ratio

Higher reproducibility in Mn and [ln]% vs Direct Polymerization. Independent of reactivity  or Solubility (LnL3PhenA)
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Characterization of the Polymer Lanthanide Conjugates. 
Coordination of the LnL3 complex to the Polymer Backbone

FTIR 

1H-NMR&FTIR Confirms the coordination of the LnL3 complexes

Coordination with Eu3+ induces a high chemical shift 
downfield of the aromatic  protons in the phenantroline

1H-NMR
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Coordination with Eu3+ induces a high chemical shift 
downfield of the aromatic  protons in the phenantroline

Characterization of the Polymer Lanthanide Conjugates. 
Coordination of the LnL3 complex to the Polymer Backbone

1H-NMR



Influence of the Method and The Processing Parameters on the Size of Polymeric Micelles
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[Pol]0 Initial Polymer Concentration

Viscosity and Polarity of the Organic Solvent

[Vol%] Final Concentration of Organic Solvent

(𝒗: ml/min) Rate of Addition

f Hydrophobic/Hydrophilic Balance 

Stifnness, Glass Transition Temperature (Tg)

Hydrophobicity

Mn, Molecular Weight of the Polymer

(Tª) Temperature

(rpm) Rate mixing_Stirring



Influence of the Method and The Processing Parameters on the Size of Polymeric Micelles
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[Pol]0 Initial Polymer Concentration

Viscosity and Polarity of the Organic Solvent

[Vol%] Final Concentration of Organic Solvent

(𝒗: ml/min) Rate of Addition

f Hydrophobic/Hydrophilic Balance 

Stifnness, Glass Transition Temperature (Tg)

Hydrophobicity

Mn, Molecular Weight of the Polymer

(Tª) Temperature
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The size of the micelles decrease after

total removal of the organic solvent.

Synthesis of the Thermometric Luminiscent Micelles by Cosolvent method. Solvent Effect

Solvents with lower viscosity mix faster with water, which
causes more uniform supersaturation, leading to smaller
micelles.

Self-assembly is based on a nucleation-controlled process.
The size of micelles is dependent on the nucleation rate. 
.
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The size of the micelles decrease after

total removal of the organic solvent.

Synthesis of the Thermometric Luminiscent Micelles by Cosolvent method. Solvent Effect

Solvents with lower viscosity mix faster with water, which
causes more uniform supersaturation, leading to smaller
micelles.

Self-assembly is based on a nucleation-controlled process.
The size of micelles is dependent on the nucleation rate. 
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Synthesis of the Thermometric Luminiscent Micelles by Cosolvent method. Addition Rate

Self-assembly is based on a nucleation-controlled process.
The size of micelles is dependent on the nucleation rate. 

Size of Micelles is afected by the addition rate
Higher addition rates induces smaller sizes

27.8 nm 20 nm

26.4 nm 240 nm 21 nm

25.2 nm 260 nm 21.2 nm

292 nm 135 nm

1mL/min

0.5 mL/min

Fast

0.15 mL/min

Dynamic Light  Scaterring DLS



Control In the size of the Micelles
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Micelles Characterization STEM (MA/DNPD)

Electron Dispersive Scaterring



Micellar Colloidal Stability after 6 months. Chemical Stability
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 Lyophilized polymeric micelles (after 1 month)

Good Steric Stabilization (Z(mV):-2mV) NaCl 10 mM) 

DLS
FTIR Detachment of the complexes was not observed



Micellar Colloidal Stability vs pH and Ionic Strength of MA/DNPD based Polymeric Micelles 
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Micellar Colloidal Stabilty vs Tª of MA/DNPD based Polymeric Micelles
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Thermometric analysis was performed in the RT-55 C 
temperature range based on a change in the intensity 
of the 5D0-7F2 (Eu3+) and 4G5/2-6H5/2 (Sm3+) transitions

Photoluminescence studies
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Which is the best NTH? 

BTFA DNPD
Quantum Yield

(%)
3.5 0.2

Max Relative

Sensitivity

(%K-1)

1.5% K–1

(at 328 K)1

1.7 % K–1

(at 328 K)

δ Temp. 

uncertainty

6 mK

(at 328 K)

0.20 K

(at 305 K)

Brightness 

(M-1cm-1)
17-740 0.40-32
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Which is the best NTH? 

BTFA DNPD
Quantum Yield

(%)
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and incubated at RT  for 24 h
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Optical properties of DNPD based polymeric micelles in different Media
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Micelles Characterization Dilution Effect (DLS-Emission)-CMC 

Critical micelle concentration (CMC)
CMC is the minimum concentration of the amphiphilic 
polymers required to self-assemble into micelles in 
solution.
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Cell Viability and Cell Uptake Studies (MA/DNDP)
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MDA-MB-468 breast cancer cell line 

DMEM  24 h at 37oC
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Cell Viability and Cell Uptake Studies (MA/DNDP)
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[Ln] MFI’s NP x-Fold

___ 0 2145 1,00

40 mM 5094 2,37

80 mM 6056 2,82

160mM 6005 2,80

Flow Citometry-Lanthanide emission

The percentage of internalized micelles was estimated by ICP-OE, 
analyzing the concentration of lanthanides present in the recovered cell 
culture medium  (10-15%)
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Intracellular temperature Mapping Set Up
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Real-time intracellular temperature MA/DNPD 
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Local magnetic hyperthermia

MNH_LNT

Intracellular Temperature

Amphiphilic BCP-Lantanides Complexes Conjugates

https://pubs.acs.org/doi/abs/10.1021/acs.nanolett.9b00579
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Low Toxicity Effect and  similar internalización rates was
obserbed for different micellar compositions

Cell Viability and Internalization Studies
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2

OFe

totOpH
SAR

Encapsulation

Synthesis of the Second Generation of  MNH-LNT for Cell Internalization 



Amphiphilic Block copolymer_
Lanthanide Complexes Conjugate

MNPs are encapsulated during the self assembly of 
the amphiphilic block copolymer in water.

Lanthanide Complex are chemically attached to 
Polymer backbone

6
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P(MPEGMA-st-PEGMA)-b-P(4VP-st-VBTpy@Eu22.5Sm77.5(BNPD)3)
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Local MNH temperature gradients in aqueous suspensions/ in cell magnetic  Hyperthermia  

Measurement of Local Temperature on the surface 
of magnetic cores with high temporal resolution.

Temperature  gradient between MNH and water

OFF	 ON	OFF	

T	
(o
C
)	

Time	(min)	

ON	

DT	=	4	oC	

2.0 mg(Fe2O3)/mL 
f = 100 kHz and H = 45 mT

Temperature gradients (5ºC) in the MNH-LNT in the interior of 
MDA-MB468 cancer cells under magnetic hyperthermia

EuSm
No field

20 min

IEu/ISm

0.1 mg/mL [g-Fe2O3]
24 h at 37oC DMEM

MDA-MB-468
breast cancer cell lines 

MNH-LNT preserve their thermometric properties in  cell 
culture medium



Amphiphilic block copolymers aggregate in water by association of the Hydrophobic blocks (Hydrophobic 
effect). This process can lead to a range of morphologies: mostly spheres, rods, sheets or vesicles

Packing Parameter

Intrinsic Factors

Temperature

Concentration

Method of Preparation

Temperature

pH

Organic Solvents

Ionic strength

Additives

Extrinsic Factors

Self assembly of amphihilic block copolymer in water



Packing Parameter

Intrinsic Factors

Temperature

Concentration

Method of Preparation

Temperature

pH

Organic Solvents

Ionic strength

Additives

Extrinsic Factors

Self assembly of amphihilic block copolymer in water

Amphiphilic block copolymers can self assembly in a selective solvent ( water) and this process can lead to a 
range of different morphologies mostly micelles, vesicles and planar bilayers



20.3 ± 0.2 nm

Thermometric analysis was performed in the RT-55 C 
temperature range based on a change in the intensity 
of the 5D0-7F2 (Eu3+) and 4G5/2-6H5/2 (Sm3+) transitions

Thermometric analysis 



Temperature Cycling experiments /Reproducibility. 
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